THE 2-0X0-THIAZOLIDINIUM MOIETY AS A NOVEL INITIATING CENTER FOR STEREOSELECTIVE OLEFIN CYCLISATIONS.

J.A.M. Hamersma, H.E. Schoemaker¹ and W.N. Speckamp^{*}, Laboratory of Organic Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands.

In recent years the synthetic utility of stereoselective α -acyliminium \det cyclisations has been amply demonstrated². Suitable structural variations in either the olefinic or in the a-acyliminium part could enlarge the scope of the method further. As an illustration of the latter modification some results on the 2-oxo-thiazolidinium moiety are reported herein.

The starting imides used - 2,4-thiazolidinediones³- are coupled via the oxidation-reduction technique⁵ with the appropriate alcohol to afford the N-alkylated derivatives $1a-7a$ in good yields. NaBH₄/H⁺ reduction provided the mostly crystalline carbinollactams 1b-7b which were used after purification via columnchromatography or recrystallization. The observed reqioselectivity effect in the reductions is either rationalized on the basis of a difference in ketonic character between the two carbonyl groups, viz <u>la \rightarrow lb</u>, <u>4a \rightarrow 4b</u> and <u>5a</u> \rightarrow <u>5b</u>, or by steric approach control of the hydride reagent $\frac{a}{b}$ or by a combination of both effects.

Cyclisations of the ω -carbinollactams $1b-7b$ were performed under essentially similar conditions as those described before⁷. Thus reaction of $\underline{\text{1b}}$ in HCOOH for 142 hr afforded a 3 : 1 mixture (82% yield) of <u>ic</u> and its C_4 -epimer. The relative slowness of the reaction is most probably due to the reversible formation of the intermediate enamide 8 which in contrast to analogous derivatives in the succinimide and glutarimide series only gradually cyclizes.

The rate of ring closure could be enhanced considerably by either blocking the adjacent CH₂-group thereby preventing enamide formation or by raising the nucleophilic character of the vinylic moiety. Within the latter context the cycl. isation of $4b$ is completed after 18 hr thereby affording a 8:3 mixture of 4c and its C₄-epimer. <u>4c</u>: 93-94⁰. IR(CHCl₃): 1665 and 1720 cm⁻¹ (C=O). NMR: δ (CDCl₃) 8.02 (s, 1H, CHO), 3.68-4.07 (m, 2H, H₆ax and H₂eq), 1.58 (s, 3H, CH₃).

On the other hand complete ring closure of $2b$ (92% yield) proceeded within 2 hr upon HCOOH treatment at room temperature. A 3 : 1 mixture of 2c and its

C₄-epimer was obtained. <u>2c</u>: mp. 137-138[°]. IR(CHCl₃): 1670 and 1725 cm⁻¹ (C=0). NMR: δ (CDCl₃) 8.07 (s, 1H, CHO), 4.80-5.18 (m, 1H, H_4 ax) 3.35 (d of d, J₁ = 12Hz, J_2 = 3Hz, H₆ax), 1.46 and 1.56 (s and s, 6H. 2 x CH₃).

The retardation of the cyclisation process by reversible enamide formation is also clearly indicated by the result of the cyclohexenyl derivative 5a which afforded only $8 (R = [3-cyclohexene]-methyl)$ as an oil.

On the contrary, ring closure of 6b was completed in less than 2 hr and yielded a mixture of three cyclisation products: 6c (50%), 6d (34%) and 6e (16%). <u>6c</u>: mp. 116-118[°]. IR(CHC1₃): 1655 cm⁻¹ (C = 0). NMR: δ (CDC1₃) 5.85 (m, 2H, CH=CH), 4.26 (d of m, 1H, H₂eq), 3.34 (d, J = 2Hz, 1H, H₄ax), 3.05 (d of m, 1H, H₂ax).
<u>6d</u>: mp. 131-132⁰, IR(CHCl₃): 1660 an 1725 cm⁻¹ (C = 0). NMR: δ (CDCl₃) 8.00 (s, 1H, CHO), 5.22-5.60 (septet, IH, H₇ax), 4.15 (d of m, J_d = 13 Hz, H₂eq), 3.38 (d, J = 2 Hz, H₄ax), 3.05 (d of m, 1H, H₂ax).

Compounds 6c and 6e originate from the C_6 -carbenium intermediate A, while 6d is derived from the C_7 - carbenium intermediate B which in turn is formed from A

 $N \circ$, 15 1349

via a [1,2]-hydride shift. Prolonged HCOOH treatment of 6c did not lead to any change thus excluding an acid catalyzed addition to the C=C bond in the formation of 6d.

Finally the ability of the 2-oxo-thiazolidinium moiety to induce cyclisation of an acetylenic bond⁸ was demonstrated in the conversion of $\frac{7b}{ }$ into the ketone 7c (72 hr, r.t., 80% yield), mp. 117-118°, IR (KBr): 1655 and 1708 cm⁻¹ (C = 0). NMR: δ (CDC1₃) 4.25-4.50 (m, 1H, H₂eq), 3.58 (d of d, J₁=11Hz, J₂=5Hz, 1H, H₆ax), 2.95-3.25 (m, 1H, H₂ax), 1.43 and 1.63 (2xs, 6H, 2xCH₃).

The foregoing results have indicated the easy formation of a variety of thiazolidine derivatives of interesting pharmacological structure which hitherto were not accessible via simple routes.

More important from a synthetic point of view, however, is the aptitude of the sulfur heterocycle to undergo further transformation resulting in a stereocontrolled synthesis of multiple substituted piperidine derivatives.

As an example of this novel technique the preparation of an all-cis substituted derivative is described.

Cyclisation of compound $\underline{3b}$ (HCOOH, r.t., 72 hr) afforded in an essentially stereospecific manner compound <u>3c</u> (96% yield): mp. 109-110 $^{\circ}$. IR(CHCl₃): 1660 and 1720 cm⁻¹ (c=O). NMR: δ (CDC1₃) 8.01 (s, 1H, CHO), 4.93-5.23 (d of t, J₁=12Hz, $J_2=J_3 = 5$ Hz, 1H, H₄ax), 3.22 (d, J = 2.5Hz, 1H, H₆ax). LAH-reduction of 3c (THF, 16 hr, reflux) gave the crystalline disulfide 9^9 , formed via reductive ring fission, followed by oxidative dimerization (51% yield), mp. 152-154⁰. ¹H NMR: δ (CDCl₃): 3.74 (d of t, $\rm J_1$ = 11z, $\rm J_2$ = J₃= 5Hz, 2H, C<u>H</u>OH), 2.57 (s, 6H, 2 x N-CH₃). The molecular weight of 432 was determined with the aid of Field-ionization mass spectroscopy. The "decoupled" 13 C-NMR spectrum showed 11 signals, indicating a symmetrical structure. 13 C NMR: δ (CDCl₃) 73.56(d), 71.65(d), 55.56(t), 54.24(s), 45.07 (d), 43.58(q), 30.93(q), 27.58(q), 27.43(t), 18.63(t), 16.15(q). Treatment of compound 9 with Raney Ni (THF, 20 hr, reflux), afforded the crystalline cissubstituted piperidine <u>10</u> (67% yield), mp. 96-98 $^{\circ}$. NMR: δ (CDCl₃) 3.65-3.92 (d of t, 1H, CHOH) 2.23 (s, 3H, NCH₃), 5.09 (m, 2H, \bigcup C = CH₂), 1.83 (br s, 3H, C=C-CH₃). Obvious ramifications of the latter procedure are under active investigation.

References

- 1. Part of the forthcoming Ph.D. Thesis of H.E. Schoemaker, University of Amsterdam.
- 2a. H.E. Schoemaker, J. Dijkink and W.N. Speckamp, <u>Tetrahedron</u>, <u>34</u>, 163 (1978); **b.** H.E. Schoemaker and W.N. Speckamp, Tetrahedron Letters, 4841 (1978).
- 3. Commercially available or prepared by simple standard procedures⁴.
- 4a. cf. H. Erlenmeyer and H. von Meyenburg, <u>Helv.Chim.Acta</u>, <u>20</u>, 1388 (1937);
- b. E.E. Smissman, <u>J.Amer.Chem.Soc</u>., <u>76</u>, 5805 (1954).
- 5. O. Mitsunobu, M. Wada and T. Sano, <u>J.Amer.Chem.Soc</u>., <u>9</u>4, 679 (1972) **see** also ref. 2a.
- 6a. J.B.P.A. Wijnberg, H.E. Schoemaker and W.N. Speckamp, Tetrahedron, $\underline{\mathfrak{34}}$, 179 (1978);
- b. R.E. Rosenfield Jr. and J.D. Dunitz, <u>Helv.Chim.Acta</u>, <u>61</u>, 2176 (1978).
- 7. See ref. 2a.
- 8. T. Boer-Terpstra, J. Dijkink, H.E. Schoemaker and W.N. Speckamp, Tetrahedron Letters, 939 (1977).
- 9. All new compounds gave correct analytical data.

(Received in UK 26 January **1979) +++++++++++++**